Publications at the Riemann Center

Nicolai maps with four-fermion interactions

authored by
Lorenzo Casarin, Olaf Lechtenfeld, Maximilian Rupprecht
Abstract

Nicolai maps offer an alternative description of supersymmetric theories via nonlinear and nonlocal transformations characterized by the so-called ‘free-action’ and ‘determinant-matching’ conditions. The latter expresses the equality of the Jacobian determinant of the transformation with the one obtained by integrating out the fermions, which so far have been considered only to quadratic terms. We argue that such a restriction is not substantial, as Nicolai maps can be constructed for arbitrary nonlinear sigma models, which feature four-fermion interactions. The fermionic effective one-loop action then gets generalized to higher loops and the perturbative tree expansion of such Nicolai maps receives quantum corrections in the form of fermion loop decorations. The ‘free-action condition’ continues to hold for the classical map, but the ‘determinant-matching condition’ is extended to an infinite hierarchy in fermion loop order. After general considerations for sigma models in four dimensions, we specialize to the case of CPN symmetric spaces and construct the associated Nicolai map. These sigma models admit a formulation with only quadratic fermions via an auxiliary vector field, which does not simplify our analysis.

Organisation(s)
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
External Organisation(s)
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Type
Artikel
Journal
Journal of high energy physics
Volume
2023
No. of pages
17
ISSN
1029-8479
Publication date
19.12.2023
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Electronic version(s)
https://doi.org/10.48550/arXiv.2310.19946 (Access: Offen)
https://doi.org/10.1007/JHEP12(2023)132 (Access: Offen)