Publications at the Riemann Center

From Yang–Mills in de Sitter Space to Electromagnetic Knots

authored by
O. Lechtenfeld
Abstract

We review analytic SU(2) Yang–Mills solutions with finite action on four-dimensional de Sitter space from a new perspective, by conformally mapping dS4 to a finite Lorentzian cylinder(0,π)XS3 . As a byproduct, all abelian (i.e. Maxwell) solutions are classified by SO(4) representations. Conformal equivalence of (two copies of half of) this cylinder to Minkowski space yields a complete set of rational Maxwell solutions on the latter, which are known as electromagnetic knots. Their properties are efficiently computed on de Sitter space. We close with a couple of explicit examples.

Organisation(s)
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
Type
Artikel
Journal
Physics of Particles and Nuclei Letters
Volume
17
Pages
701-706
No. of pages
6
ISSN
1547-4771
Publication date
09.2020
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Strahlung, Atom- und Molekularphysik sowie Optik, Kern- und Hochenergiephysik, Radiologie, Nuklearmedizin und Bildgebung
Electronic version(s)
https://doi.org/10.1134/s1547477120050246 (Access: Geschlossen)