Publications at the Riemann Center
Counting lines on surfaces, especially quintics
- authored by
- Sławomir Rams, Matthias Schütt
- Abstract
We introduce certain rational functions on a smooth projective surface X in IP^3 which facilitate counting the lines on X. We apply this to smooth quintics in characteristic zero to prove that they contain no more than 127 lines, and that any given line meets at most 28 others. We construct examples which demonstrate that the latter bound is sharp.
- Organisation(s)
-
Institut für Algebraische Geometrie
Riemann Center for Geometry and Physics
- External Organisation(s)
-
Jagiellonian University
- Type
- Artikel
- Journal
- Annali della Scuola Normale - Classe di Scienze
- Volume
- 20
- Pages
- 859-890
- No. of pages
- 32
- ISSN
- 0391-173X
- Publication date
- 11.09.2020
- Publication status
- Veröffentlicht
- Peer reviewed
- Yes
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Electronic version(s)
-
https://arxiv.org/abs/1803.03548 (Access:
Offen)
https://doi.org/10.2422/2036-2145.201804_024 (Access: Geschlossen)