Publications at the Riemann Center

Counting lines on surfaces, especially quintics

authored by
Sławomir Rams, Matthias Schütt
Abstract

We introduce certain rational functions on a smooth projective surface X in IP^3 which facilitate counting the lines on X. We apply this to smooth quintics in characteristic zero to prove that they contain no more than 127 lines, and that any given line meets at most 28 others. We construct examples which demonstrate that the latter bound is sharp.

Organisation(s)
Institut für Algebraische Geometrie
Riemann Center for Geometry and Physics
External Organisation(s)
Jagiellonian University
Type
Artikel
Journal
Annali della Scuola Normale - Classe di Scienze
Volume
20
Pages
859-890
No. of pages
32
ISSN
0391-173X
Publication date
11.09.2020
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Mathematik (insg.)
Electronic version(s)
https://arxiv.org/abs/1803.03548 (Access: Offen)
https://doi.org/10.2422/2036-2145.201804_024 (Access: Geschlossen)