Publications at the Riemann Center

The tetrahexahedric Calogero model

authored by
Francisco Correa, Olaf Lechtenfeld
Abstract

We consider the spherical reduction of the rational Calogero model (of type An-1, without the center of mass) as a maximally superintegrable quantum system. It describes a particle on the (n = 2)-sphere in a very special potential. A detailed analysis is provided of the simplest non-separable case, n = 4, whose potential blows up at the edges of a spherical tetrahexahedron, tesselating the two-sphere into 24 identical right isosceles spherical triangles in which the particle is trapped. We construct a complete set of independent conserved charges and of Hamiltonian intertwiners and elucidate their algebra. The key structure is the ring of polynomials in Dunkl-deformed angular momenta, in particular the subspaces invariant and antiinvariant under all Weyl reflections, respectively.

Organisation(s)
Institut für Theoretische Physik
Riemann Center for Geometry and Physics
External Organisation(s)
Universidad Austral de Chile
Type
Artikel
Journal
Physics of Particles and Nuclei Letters
Volume
14
Pages
304-311
No. of pages
8
ISSN
1547-4771
Publication date
03.2017
Publication status
Veröffentlicht
Peer reviewed
Yes
ASJC Scopus Sachgebiete
Strahlung, Atom- und Molekularphysik sowie Optik, Kern- und Hochenergiephysik, Radiologie, Nuklearmedizin und Bildgebung
Electronic version(s)
https://doi.org/10.48550/arXiv.1604.06457 (Access: Offen)
https://doi.org/10.1134/S1547477117020066 (Access: Geschlossen)