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Introduction And Motivation
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One of the big challenges in M-theory is the formulation of the
so-called \/ = (2, 0) theory. This a chiral superconformal
gauge theory in six dimensions with maximal A" = (2,0)
supersymmetry.
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One of the big challenges in M-theory is the formulation of the
so-called AV = (2,0) theory. This a chiral superconformal
gauge theory in six dimensions with maximal A" = (2,0)
supersymmetry. At the linearised level, we have:

@ a potential 2-form B with curvature 3-form H = dB such
that H = »gH,

e five scalars ¢" such that 0¢" = 0, and
@ four Weyl fermions ¢/ such that Dy’ = 0.
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One of the big challenges in M-theory is the formulation of the
so-called AV = (2,0) theory. This a chiral superconformal
gauge theory in six dimensions with maximal A" = (2,0)
supersymmetry. At the linearised level, we have:

@ a potential 2-form B with curvature 3-form H = dB such
that H = »gH,

e five scalars ¢" such that 0¢" = 0, and
@ four Weyl fermions ¢/ such that Dy’ = 0.

Problem: How can this be promoted to an interacting
non-Ablian theory?
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Proposal: Combine twistor theory and categorified principal
bundles.
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@ The central objects are double fibrations of the form

F
N
P M

where M, F and P are complex manifolds:
e M space-time
e F correspondence space
e P twistor space
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@ The central objects are double fibrations of the form

F
N
P M

where M, F and P are complex manifolds:
e M space-time
e F correspondence space
e P twistor space

@ Then we have a correspondence between P and M, i.e.
between points in one space and subspaces of the other:
m(m (X)) =P xeM
peP & m(ry N (p) = M
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Twistor Correspondence: P & F 3 M

@ Using this correspondence, we can transfer data given on
P to data on M and vice versa (e.g. vector bundles, sheaf
cohomology groups, contact forms, ...).
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Twistor Correspondence: P & F 3 M

@ Using this correspondence, we can transfer data given on
P to data on M and vice versa (e.g. vector bundles, sheaf
cohomology groups, contact forms, ...).

@ Take some analytic object Obp on P and transform it to an
object Oby, on M; this in turn is constrained by some PDEs
as 7;0bp has to be constant up the fibres of 71 : F — P.
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Twistor Correspondence: P & F 3 M

@ Using this correspondence, we can transfer data given on
P to data on M and vice versa (e.g. vector bundles, sheaf
cohomology groups, contact forms, ...).

@ Take some analytic object Obp on P and transform it to an
object Oby, on M; this in turn is constrained by some PDEs
as 7;0bp has to be constant up the fibres of 71 : F — P.

@ Under suitable topological conditions, the maps
Obp = ObM and ObM — Obp

define a bijection between [Obp] and [Oby,] (the objects in
question will only be defined up to equivalence).
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Example: Penrose Transform

Consider 4d flat space M = C* with TM =~ S S:
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Example: Penrose Transform

Consider 4d flat space M = C* with TM =~ S S:
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Example: Penrose Transform

Consider 4d flat space M = C* with TM =~ S S:

~ zero-rest-mass fields
of helicity hon M
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Example: Penrose—Ward Transform

Consider again M = C* with TM =~ S® S:
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Example: Penrose—Ward Transform

Consider again M = C* with TM =~ S® S:

[711(7r2_1(x)) J<—>P P3| P

We have a natural bijection between equivalence classes of

@ holomorphic M-trivial principal G-bundles over P and

@ solutions to F = x4 F on M with F = dA + }[A, Al and
AcQ'®g.
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Chiral Fields In 6d And Their Twistorial Interpretation

1111.2539 (JMP) with C Sdmann
see also 1111.2585 (JGP) by Mason, Reid-Edwards & Taghavi-Chabert
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@ Consider M = €8 with TM = S A S, where S is the bundle
of anti-chiral spinors.
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@ Consider M = €8 with TM = S A S, where S is the bundle
of anti-chiral spinors.

@ Then choose coordinates X8 = —xBA with 9,5 = —0a,
where A, B,... =1,...,4 and the metric is }eagcp-
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@ Consider M = €8 with TM = S A S, where S is the bundle
of anti-chiral spinors.

@ Then choose coordinates X8 = —xBA with 9,5 = —0a,
where A, B,... =1,...,4 and the metric is }eagcp-

@ Null-momentum pag is given by

ABCD _ 15 o8 — 0

%PABPCDE
so that
pa = Kaakepe®, — p*f = KAkBbe,

—_——

where a, a, ... are SL(2,C) x SL(2, C) little group indices.
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Chiral Fields

@ Interested in fields that transform trivially under Sm) —
chiral fields with (2h +1,1) and h € %JNO which we call spin
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Chiral Fields

@ Interested in fields that transform trivially under SHE,/(D) —
chiral fields with (2h +1,1) and h € %JNO which we call spin

@ The N = (2,0) tensor multiplet consists of a self-dual
3-form H = dB in the (3, 1) representation, four Weyl
fermions ¢/ in the (2,1) and five scalars " in the (1,1):

0"Heg = 0*ype = O = 0,

where
H = dB (Has, HAB) = (8C(ABB)C,8C(ABCB))
s
H = xH HAB = 0
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Chiral Fields

@ Interested in fields that transform trivially under SHE,/(D) —
chiral fields with (2h +1,1) and h € %JNO which we call spin

@ The N = (2,0) tensor multiplet consists of a self-dual
3-form H = dB in the (3, 1) representation, four Weyl
fermions ¢/ in the (2,1) and five scalars " in the (1,1):

0"Heg = 0*ype = O = 0,

where
H = dB (Has, HAB) = (8C(ABB)C,8C(ABCB))
s
H = xH HAB = 0

@ The corresponding plane waves are

HABab - kA(aka) eix~p’ Yaa = kAa eix~p’ ¢ = eix-p .
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Twistor Space For Chiral Fields

@ Starting from space-time M with coordinates x”8, define
the correspondence space F to be F := P(S) = €8 x P3
with coordinates (xA8, \,).
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Twistor Space For Chiral Fields

@ Starting from space-time M with coordinates x”8, define
the correspondence space F to be F := P(S) = €8 x P3
with coordinates (xA8, \,).

@ Introduce a distribution (VA) < TF by VA := \50*8 which
is integrable. Hence, we have foliation P := F/(VA).
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Twistor Space For Chiral Fields

@ Starting from space-time M with coordinates x”8, define
the correspondence space F to be F := P(S) = €8 x P3
with coordinates (xA8, \,).

@ Introduce a distribution (VA) < TF by VA := \50*8 which
is integrable. Hence, we have foliation P := F/(VA).

@ One can show that
P = T'P3®@ Ops(2) — Ops(1)@C* = P\ P3
so we may use coordinates (24, \4) with 4\, = 0 and

thus
F
7T’1/ \7‘1'2
P M
with 75 being the trivial projection and

T (X*Bag) = (28 00) = (XBag, Ag).
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Twistor Space For Chiral Fields

F
Ve
P M

Because of z#* = x”B)\ we have a geometric correspondence:

m(my (X)) ZPE s P xeM
peP o m(r(p)=CEo M
where
(Dg . xAB _ X648 + €ABCDMC)\D

which is a totally null 3-plane.
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Penrose Transform: H?

@ Then for h € 1N

Ho(P, Op(—2h — 4)) = { chiral zero-rest-mass fields }

of spin hon M

Martin Wolf Self-Dual Higher Gauge Theory



Penrose Transform: H?

@ Then for h € 1N

Ho(P, Op(—2h — 4)) = { chiral zero-rest-mass fields }

of spin hon M

@ This can be interpreted as a contour integral
¢A1...A2h(X) = %Q(S’O) /\A1 s )\Ath_gh_4(X - A, )\) s
Y

where ~ is topologically a 3-torus and

QB0 = T ABCDN dag AdAc AdAp .
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Penrose Transform: H?

@ Then for h € 1N

Ho(P, Op(—2h — 4)) = { chiral zero-rest-mass fields }

of spin hon M

@ This can be interpreted as a contour integral
¢A1...A2h(X) = %Q(S’O) /\A1 s )\Ath_gh_4(X - A, )\) s
Y

where ~ is topologically a 3-torus and

QB0 = T ABCDN dag AdAc AdAp .

What about h < 0?
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Penrose—Ward Transform: H?

@ For h e —1N, the cohomology group H3(P, Op(—2h — 4))
yields trivial space-time fields.
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Penrose—Ward Transform: H?

@ For h e —1N, the cohomology group H3(P, Op(—2h — 4))
yields trivial space-time fields.

@ In fact, what replaces this cohomology group is another
cohomology group. One can show that for h € %INO

H2(P,Op(2h — 2)) = { zero-rest-mass fields }

of helicity hon M

by means of a Penrose—Ward transform.
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Penrose—Ward Transform: H?

@ For h e —1N, the cohomology group H3(P, Op(—2h — 4))
yields trivial space-time fields.

@ In fact, what replaces this cohomology group is another
cohomology group. One can show that for h € %INO

H2(P,Op(2h — 2)) = zero-rest-mass fields

P - of helicity h on M

by means of a Penrose—Ward transform.

@ Note that in the case of interest for the self-dual 3-forms,
we have h = 1 and thus H?(P, Op), which in turn is
isomorphic to H?(P, O%). Hence, holomorphic bundle
1-gerbes on twistor space correspond to self-dual 3-form
fields on space-time.

Martin Wolf Self-Dual Higher Gauge Theory



Twistor Action

@ The fact that we have H? and H® to describe chiral
zero-rest-mass fields allows us to write down a twistor
space action principle for these fields.
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Twistor Action

@ The fact that we have H? and H® to describe chiral
zero-rest-mass fields allows us to write down a twistor
space action principle for these fields.

@ Define holomorphic volume form on P

Q6.0) ._ j[Q(“’O)(z)AQ(&O)(,\)
B Y ZA)\A ’

where Q*0(z) := Jieagcpdz? A dzB A dzC A dzP and
QBO(N) := LeABCDN,dAg A dAg A dAp.
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Twistor Action

@ The fact that we have H? and H® to describe chiral
zero-rest-mass fields allows us to write down a twistor
space action principle for these fields.

@ Define holomorphic volume form on P

Q6.0) ._ j[Q(“’O)(z)AQ(&O)(,\)
B Y ZA)\A ’

where Q*0(z) := Jieagcpdz? A dzB A dzC A dzP and
QBO(N) := LeABCDN,dAg A dAg A dAp.

@ Then, .
° - / e\ B0# A 5C%)
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Non-Abelian Extensions And Supersymmetry

1205.3108 (CMP) with C Samann
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Principal Bundles—A Recap

@ Let M =J, U, be a manifold and G a Lie group. A
principal G-bundle over M with connection is described by
a G-valued Deligne 1-cocycle ({gap}, {Aa}) with

Gabbc = Gac, Ab = Jgp AaQab + Jap dGab -
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Principal Bundles—A Recap

@ Let M =J, U, be a manifold and G a Lie group. A
principal G-bundle over M with connection is described by
a G-valued Deligne 1-cocycle ({gap}, {Aa}) with

Gabbc = Gac, Ab = Jgp AaQab + Jap dGab -

@ Two Deligne 1-cocycles ({gab}, {Aa}) and ({ap} {Aa})
are said to be cohomologous whenever

9a0ab = Gab9b ; /z\a = g;1Aaga +ga_1 dga -
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Principal Bundles—A Recap

@ Let M =J, U, be a manifold and G a Lie group. A
principal G-bundle over M with connection is described by
a G-valued Deligne 1-cocycle ({gap}, {Aa}) with

Gabbc = Gac, Ab = Jgp AaQab + Jap dGab -

@ Two Deligne 1-cocycles ({gab}, {Aa}) and ({ap} {Aa})
are said to be cohomologous whenever

9a0ab = Gab9b ; /z\a = g;1Aaga +ga_1 dga -
@ One associates a curvature 2-form F5 := dA; + %[Aa, Ag
with y
Fo = O FaQap, Fa = 93'Faga.
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Question: How can one generalise this to incorporate gauge
potentials of higher form-degree?
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Lie Crossed Modules

@ Let (G, H) a pair of Lie groups together with an
automorphism action > of G on H and a group
homomorphism 0 : H — G such that

a(g>h) = go(hg™', a(h)>hy = hihphy”

called the equivariance and Peiffer conditions. This is
known as a Lie crossed module.
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Lie Crossed Modules

@ Let (G, H) a pair of Lie groups together with an
automorphism action > of G on H and a group
homomorphism 0 : H — G such that

a(g>h) = go(hg™', a(h)>hy = hihphy”
called the equivariance and Peiffer conditions. This is

known as a Lie crossed module.

@ A canonical example is the automorphism Lie 2-group

(G LA Aut(G), ) where 0 is the embedding via conjugation
and > is the identity. For what follows, however, we need
other examples.
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Strict Principal 2-Bundles

Let M = | J, U, be a manifold. A strict principal 2-bundle with
connective structure is described by a (G, H)-valued Deligne

2-cocycle ({Gab}, {Navct, {Aat. {Ba}, {Aap}) with
t(Nabc)9abGbe = Yac
hacdhave = havd(9ab > hbca)
Ab = G AaGab + G d9ab — I(Aap)
By, = gz >Ba— Vihap — 50(Aap) >Nap
Nac = Moo+ Gpe >Nab — Gad > (NaboVahyy) -
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Strict Principal 2-Bundles

Two Dellgne2 cocycles ({gab} {hapvc}, {Aa}, {Ba}, {Aap}) and
({Gab}, {havc}, {Aa}, {Ba}, {Aap}) are said to be cohomologous
whenever
9aGab = O(hab)9ab9b »
hachabc = (ga > F’abc)hab(gab > hbc) ’
Z\a = 951Aaga + 9‘3_1 dga — 9(Aa) ,
Ba - g DBa a/\a *8(/\(3) [>/\a B
Rab = 95" >Aab+No— Gap >Na— (95" Gap) > (Nap Viohab)
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Principal 2-Bundles

@ The associated curvature 2- and 3-forms are
Fa = dAs+ }[Aa, Adl,
Hz := dBs+ Az > Bj
with
Fo = G Fagab — O(Vohab + 30(Nab) >Nab) ,
Hp = gz > Ha— (Fb— (Bb)) >Aab
and
Fa = Q;1Faga — 0(Valha+ %a(/\a) >Aa)
Ha = 92" > Ha— (Fa—0(Ba)) >Aa
@ Thus, provided F; = 9(B,), the 3-form curvature

transforms covariantly. This is called the fake curvature
constraint.
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Non-Abelian Self-Dual Tensor Field Equations

@ Let us consider the following set of non-Abelian self-dual
tensor equations

H=dB+A>B, H = xH, F = dA+l[A Al = 9(B)
on space-time M = C8. In spinor notation, this reads as

HAB = VOABLE) = 0, Fs8 = 9(BA®)
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Non-Abelian Self-Dual Tensor Field Equations

@ Let us consider the following set of non-Abelian self-dual
tensor equations

H=dB+A>B, H = xH, F = dA+l[A Al = 9(B)
on space-time M = C8. In spinor notation, this reads as
HAB = VOABLE) = 0, Fs8 = 9(BA®)

@ Can we use twistor theory to derive these equations
including the just-mentioned gauge transformations from
algebraic data on twistor space?
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Penrose—Ward Transform: P &~ F 23 M

Theorem: There is a bijection between equivalence classes
() of holomorphic M-trivial strict principal 2-bundles on P,

(if) of holomorphically trivial strict principal 2-bundles on F
equipped with a flat relative connective structure, and

(iii) solutions to the non-Abelian self-dual tensor field
equations on space-time M.
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Penrose—Ward Transform: P &~ F 23 M

Theorem: There is a bijection between equivalence classes
() of holomorphic M-trivial strict principal 2-bundles on P,

(if) of holomorphically trivial strict principal 2-bundles on F
equipped with a flat relative connective structure, and

(iii) solutions to the non-Abelian self-dual tensor field
equations on space-time M.

Remark: The proof uses H'(F, Q] ) = 0 and Riemann-Hilbert
problems; the non-uniquess of RH problems is the origin of the

gauge transformations on space-time.
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Penrose—Ward Transform: P &~ F 23 M

Theorem: There is a bijection between equivalence classes
() of holomorphic M-trivial strict principal 2-bundles on P,

(if) of holomorphically trivial strict principal 2-bundles on F
equipped with a flat relative connective structure, and

(iii) solutions to the non-Abelian self-dual tensor field
equations on space-time M.

Remark: The proof uses H'(F, Q] ) = 0 and Riemann-Hilbert
problems; the non-uniquess of RH problems is the origin of the
gauge transformations on space-time. In a more high-brow
terminology, the Penrose—Ward transform is simply a change of
the Deligne cohomology representatives of the involved
2-bundles by means of coboundary transformations.
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Question: What about supersymmetry?
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Supertwistor Space

@ Consider N’ = (n,0) superspace M = C®/8" with

coordinates (xB, ) with 1, J,... =1,...,2n. The
derivatives
Pag = 2 _ 9 ,ou B 9
T ooxABT AT gph J 9xAB
obey

{D4,DE} = —4QYPyg .
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Supertwistor Space

@ Consider N’ = (n,0) superspace M = C®/8" with

coordinates (xB, ) with 1, J,... =1,...,2n. The
derivatives
Pag = 2 _ 9 ,ou B 9
T ooxABT AT gph J 9xAB
obey

{D4,DE} = —4QYPyg .

@ Define the correspondence space F to be F := C48" x P3
with coordinates (X8, 77, A4).
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Supertwistor Space

@ Consider N’ = (n,0) superspace M = C®/8" with

coordinates (xB, ) with 1, J,... =1,...,2n. The
derivatives
Pag = 2 _ 9 ,ou B 9
T ooxABT AT gph J 9xAB
obey

{D4,DE} = —4QYPyg .

@ Define the correspondence space F to be F := C48" x P3
with coordinates (X8, 77, A4).

@ Introduce a rank-3|6n distribution (VA, V/AB) < TF by
VA= \g0"F and V/4B = J=ABCD) DL which is integrable.
Hence, we have foliation P := F/(VA, V/4B).
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Supertwistor Space

@ On P, we may use coordinates (24,7, \4) with
A)\A QIJT]/T]J and thus

F
7T'1/ \712
P M
with 5 being the trivial projection and

URI ( AB777;43>\A) = (ZA»UI,)\A) =

= ((x* + QYnfnF)Ag. 0 A4, Aa)
@ A point x € M corresponds to a complex projective
3-space in P, while a point p € P corresponds to a
3|6n-superplane with
XAB = xfB | ABCD )\, 1 2QN -CDEIA >\09/DE7705] :

nt = noft +*B%Pg01cp -
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Penrose—Ward Transform: P &~ F 23 M

Theorem: There is a bijection between equivalence classes
() of holomorphic M-trivial strict principal 2-bundles on P and

(i) of solutions to the constraint system
Fa® = 0(Ba®), Fasc = 0(Basc), Fis = 9(Big)
HA® =0,
HaBL = 68y} — 1aBul
Hag¥y = eagepd”
Hifo = 0.

on the chiral superspace M.
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@ We obtain the fields (Hag, ¥4, ') which transform on-shell
under gauge transformations as

(Hag. ¥, &”) — g7 >(Hag. ¥p, ¢").
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@ We obtain the fields (Hag, ¥4, ') which transform on-shell
under gauge transformations as

(Hag. ¥, &”) — g7 >(Hag. ¥p, ¢").

@ At the linearised level, they satisfy the superspace free
field equations

*CHeg = 0, 0™yp =0, 00" = 0.
A
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@ We obtain the fields (Hag, ¥4, ') which transform on-shell
under gauge transformations as

(Hag. ¥, &”) — g7 >(Hag. ¥p, ¢").

@ At the linearised level, they satisfy the superspace free
field equations

*CHeg = 0, 0™yp =0, 00" = 0.
A

@ For n=1 (n= 2), the multiplet (Hag, ¥}y, ") constitutes
an N = (n,0) tensor multiplet consisting of 1 self-dual
3-form, 2 (4) Weyl spinors, and 1 (5) scalar(s). Note that
for n = 2, the constraint Q6" = 0 is automatically built in
due to Bianchi identities (contrary to N'= 4 SYM in 4d)
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Generalisations

1305.4870 (LMP) with C S&mann
1403.7188 (submitted) with B Jur€o and C S&mann
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Strict Principal 3-Bundles

@ The constraint 9(H)=0 for the 3-form curvature H implies
that it takes values in the centre of §.
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Strict Principal 3-Bundles

@ The constraint 9(H)=0 for the 3-form curvature H implies
that it takes values in the centre of §.

@ A way to relax this is to categorify to the next level and
work with strict principal 3-bundles which are modelled on

Lie 2-crossed modules L i)> H i)> G.
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Strict Principal 3-Bundles

@ The constraint 9(H)=0 for the 3-form curvature H implies
that it takes values in the centre of §.

@ A way to relax this is to categorify to the next level and
work with strict principal 3-bundles which are modelled on

Lie 2-crossed modules L i)> H i)> G.

@ In turn, these bundles come with 1-, 2- and 3-form gauge
potentials A, B, and C taking values in g, b, and [ with
associated curvature forms

F := dA+ }[AA, H:=dB+A>B,
G :=dC+A>C+{B,B},

where {-,-} : h x h — [is the Peiffer lifting.
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Strict Principal 3-Bundles

@ The 4-form curvature G transforms covariantly provided
F=0B), H=0C).
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Strict Principal 3-Bundles

@ The 4-form curvature G transforms covariantly provided
F=0B), H=0C).

@ Thus, d(H) = 0, however, this time X € ker0 <
[X,Y]=0({X,Y}) #0forall Y €bh.
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Strict Principal 3-Bundles

@ The 4-form curvature G transforms covariantly provided
F=0B), H=0C).
@ Thus, d(H) = 0, however, this time X € ker0 <
[X,Y]=0({X,Y})#0forall Y €b.

@ We have extended the above twistor construction to this
setting, established degree-3 Deligne cohomology, and
found 6d superconformal theories containing a
non-Abelian tensor multiplet.
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Strict Principal 3-Bundles

@ The 4-form curvature G transforms covariantly provided
F=0B), H=0C).

@ Thus, d(H) = 0, however, this time X € ker0 <
[X,Y]=0({X,Y}) #0forall Y €bh.

@ We have extended the above twistor construction to this
setting, established degree-3 Deligne cohomology, and
found 6d superconformal theories containing a
non-Abelian tensor multiplet.

@ Again, the Penrose—Ward transform boils down to
changing the corresponding Deligne cocycles via
boundary transformations which works due to the
vanishing of H'(F,Q2 ) and H'(F,Q2 ).
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Strict Principal 3-Bundles

@ The 4-form curvature G transforms covariantly provided
F=0B), H=0C).

@ Thus, d(H) = 0, however, this time X € ker0 <
[X,Y]=0({X,Y}) #0forall Y €bh.

@ We have extended the above twistor construction to this
setting, established degree-3 Deligne cohomology, and
found 6d superconformal theories containing a
non-Abelian tensor multiplet.

@ Again, the Penrose—Ward transform boils down to
changing the corresponding Deligne cocycles via
boundary transformations which works due to the
vanishing of H'(F,Q2 ) and H'(F,Q2 ).

@ Note that in certain cases, these theories accommodate
some of the tensor hierarchy models of Samtleben, Sezgin
& Wimmer.
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Weak Principal k-Bundles

@ A more systematic way of generalising the above is to
make direct use of category theory.
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@ A more systematic way of generalising the above is to
make direct use of category theory.

@ Let M = |J, U, and define the Cech groupoid the groupoid
with the set of objects UaUa and the set of morphisms
U.,Ua N Up. Let BG be the groupoid which has only one
object and the elements of G as morphisms. Then,
principal G-bundles can be viewed as functors from the
Cech groupoid to BG.
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Weak Principal k-Bundles

@ A more systematic way of generalising the above is to
make direct use of category theory.

@ Let M = |J, U, and define the Cech groupoid the groupoid
with the set of objects UaUa and the set of morphisms
U.,Ua N Up. Let BG be the groupoid which has only one
object and the elements of G as morphisms. Then,
principal G-bundles can be viewed as functors from the
Cech groupoid to BG.

@ We generalise this by defining weak principal k-bundles as
weak k-functors from the Cech k-groupoid to BG for weak
Lie k-groups G.
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Semistrict Principal 2-Bundles

@ Specifically, for k = 2: weak 2-category = weak
2-groupoid = weak 2-group = semistrict 2-group =
semistrict Lie 2-group (only the associator remains
non-trivial).
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semistrict Lie 2-group (only the associator remains
non-trivial).

@ We define semistrict principal 2-bundles as a weak
2-functors from the Cech 2-groupoid to the delooping BG
of semistrict Lie 2-groups G.
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Semistrict Principal 2-Bundles

@ Specifically, for k = 2: weak 2-category = weak
2-groupoid = weak 2-group = semistrict 2-group =
semistrict Lie 2-group (only the associator remains
non-trivial).

@ We define semistrict principal 2-bundles as a weak
2-functors from the Cech 2-groupoid to the delooping BG
of semistrict Lie 2-groups G.

e Differentiating G a la Severa yields the corresponding
semistrict Lie 2-algebra (2-term L,,): one considers the
functor from the category of smooth manifolds M to the
category of G-valued descent data on surjective
submersions R x M — M
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Semistrict Principal 2-Bundles

@ Correspondingly, one finds 1-form A and 2-form B gauge
potentials with the curvatures

F = dA+ ua(AA) = p1(B),
H := dB+ pa(A, B) — g113(A A A)

where the p; are the higher products in the corresponding
2-term L., algebra
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@ Correspondingly, one finds 1-form A and 2-form B gauge
potentials with the curvatures

F = dA+ ua(AA) = p1(B),
H := dB+ pa(A, B) — g113(A A A)

where the p; are the higher products in the corresponding
2-term L., algebra

@ This construction also yields the full set of non-linear
gauge transformation by means of equivalence
transformations between functors.
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Semistrict Principal 2-Bundles

@ Correspondingly, one finds 1-form A and 2-form B gauge
potentials with the curvatures

F = dA+ ua(AA) = p1(B),
H := dB+ pa(A, B) — g113(A A A)

where the p; are the higher products in the corresponding
2-term L., algebra

@ This construction also yields the full set of non-linear
gauge transformation by means of equivalence
transformations between functors.

@ This allows us to formulate explicitly semistrict degree-2
Deligne cohomology: semistrict principal 2-bundles with
connective structure are characterised by cocycles
({Nabc}t, {Mab}, {Aa}, {Ba}, {Aap}) subject to equivalence;
note that F; = s(B,).
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Penrose—Ward Transform: P &~ F 23 M

Theorem: There is a bijection between equivalence classes

(i) of holomorphic M-trivial semistrict principal 2-bundles on
P,

(if) of holomorphically trivial semistrict principal 2-bundles on
F equipped with a flat relative connective structure and

(iii) solutions to the non-Abelian self-dual tensor field
equations on space-time M

dA+ Jua(A A) = p1(B),
H = dB+:u2(A7 B) - %/UJS(AaAa A) = xgH .

plus supersymmetry.
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Conclusions And Outlook
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In general, we have seen that the area of twistor geometry and
categorified principal bundles can be fruitfully combined to
formulate self-dual higher gauge theory in six dimensions.

The advantage of twistor geometry is that the e.o.m. and the
gauge transformations follow directly from complex algebraic
data on twistor space.

Many open questions remain such as what higher gauge
groups should be chosen, explicit solutions should be
constructed, dimensional reductions should be performed, etc
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Thank You!
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